Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Peng-Wu Zheng,^a* Wei Wang^b and Xue-Min Duan^a

 ^aSchool of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China, and
^bDepartment of Chemical Engineering, Anshan University of Science and Technology, Anshan 114002, People's Republic of China

Correspondence e-mail: zhengpw@sohu.com

Key indicators

Single-crystal X-ray study T = 294 KMean σ (C–C) = 0.003 Å R factor = 0.039 wR factor = 0.101 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N,N'-Bis(4-chlorobenzylidene)hydrazine

The title compound, $C_{14}H_{10}Cl_2N_2$, possesses a crystallographically imposed center of symmetry at the mid-point of the N-N bond and assumes a planar structure.

Received 12 August 2005 Accepted 17 August 2005 Online 20 August 2005

Comment

Thus far a number of azine compounds containing both a diimine linkage and an N–N bond have been investigated in terms of their crystallography and coordination chemistry (Kundu *et al.*, 2005; Kesslen & Euler, 1999; Armstrong *et al.*, 1998; Xu *et al.*, 1997). We report here the crystal structure of the title compound, (I), in which the two 4-chlorobenzylidene units are directly linked, without a spacer unit, through the imine N atoms.

In the solid state, the molecule of (I) possesses a crystallographically imposed center of symmetry at the mid-point of the N-N bond. The C=N-N=C linkage is planar. The N-N bond [1.414 (3) Å] is slightly longer than in related azine compounds (Xu *et al.*, 2005; Liu *et al.*, 2004; Şengül *et al.*, 2004). The C=N-N angle [112.6 (2)°] is significantly smaller than the ideal sp^2 value of 120°, as a consequence of repulsion between the nitrogen lone pairs and the adjacent C=N bond. The whole molecule is essentially planar, the r.m.s deviation being 0.020 (2) Å.

Experimental

The title compound was synthesized by the reaction of 4-chlorobenzaldehyde with hydrazine hydrate in refluxing ethanol (Liu *et al.*, 2004). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a cyclohexane solution.

Crystal data	
$C_{14}H_{10}Cl_2N_2$	$D_x = 1.437 \text{ Mg m}^{-3}$
$M_r = 277.14$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 1257
a = 3.9585 (10) Å	reflections
b = 6.9894 (17) Å	$\theta = 3.0-25.3^{\circ}$
c = 23.150 (6) Å	$\mu = 0.49 \text{ mm}^{-1}$
$\beta = 90.416 \ (4)^{\circ}$	T = 294 (2) K
$V = 640.5 (3) \text{ Å}^3$	Block, colorless
Z = 2	$0.26 \times 0.20 \times 0.14 \text{ mm}$

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Data collection

Bruker SMART 1000 CCD area-	1281 independent reflections
detector diffractometer	944 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.025$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.3^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -3 \rightarrow 4$
$T_{\min} = 0.824, \ T_{\max} = 0.934$	$k = -8 \rightarrow 7$
3387 measured reflections	$l = -28 \rightarrow 28$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + ($
$R[F^2 > 2\sigma(F^2)] = 0.039$	+ 0.2929P]
$wR(F^2) = 0.101$	where $P = (F_0^2)^2$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
1281 reflections	$\Delta \rho_{\text{max}} = 0.32 \text{ e} \text{ Å}$
82 parameters	$\Delta \rho_{\rm min} = -0.31 \ {\rm e}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Cl1-C5 N1-C1	1.742(2) 1.269(3)	N1-N1 ⁱ	1.414 (3)
C1-N1-N1 ⁱ	112.6 (2)	N1-C1-C2	121.8 (2)
N1 ⁱ -N1-C1-C2	-179.9 (2)	N1-C1-C2-C3	4.7 (3)
N1-C1-C2-C7	-176.1 (2)		

Symmetry code: (i) -x, -y, -z.

All H atoms were positioned geometrically and refined as riding, with C-H distances of 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figure 1

 $+ (0.0392P)^2$

-3

e Å

 $+2F_{a}^{2})/3$

View of the molecule of (I), with displacement ellipsoids drawn at the 30% probability level. The suffix A corresponds to symmetry code (i) in Table 1.

The authors gratefully acknowledge financial support from the Foundation for Excellent Young Teachers of Jiangxi Science and Technology Normal University.

References

- Armstrong, J. A., Barnes, J. C. & Weakley, T. J. R. (1998). Acta Cryst. C54, 1923-1925.
- Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kesslen, E. C. & Euler, W. B. (1999). Chem. Mater. 11, 336-340.
- Kundu, N., Chatterjee, P. B., Chaudhury, M. & Tiekink, E. R. T. (2005). Acta Cryst. E61, m1583-m1585.
- Liu, S. L., Chen, Y., Dai, J. F. & Liu, H. W. (2004). Chin. J. Synth. Chem. 12, 219-221.
- Şengül, A., Karadayi, N. & Büyükgüngör, O. (2004). Acta Cryst. C60, o507-0508.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Xu, L.-Z., Xu, H.-Z., Yang, S.-H., Li, C.-L & Zhou, K. (2005). Acta Cryst. E61, 031-032.
- Xu, Z., Thompson, L. K. & Miller, D. O. (1997). Inorg. Chem. 36, 3985-3995.